16 research outputs found

    Spectral Efficiency and Energy Efficiency Tradeoff in Massive MIMO Downlink Transmission with Statistical CSIT

    Full text link
    As a key technology for future wireless networks, massive multiple-input multiple-output (MIMO) can significantly improve the energy efficiency (EE) and spectral efficiency (SE), and the performance is highly dependant on the degree of the available channel state information (CSI). While most existing works on massive MIMO focused on the case where the instantaneous CSI at the transmitter (CSIT) is available, it is usually not an easy task to obtain precise instantaneous CSIT. In this paper, we investigate EE-SE tradeoff in single-cell massive MIMO downlink transmission with statistical CSIT. To this end, we aim to optimize the system resource efficiency (RE), which is capable of striking an EE-SE balance. We first figure out a closed-form solution for the eigenvectors of the optimal transmit covariance matrices of different user terminals, which indicates that beam domain is in favor of performing RE optimal transmission in massive MIMO downlink. Based on this insight, the RE optimization precoding design is reduced to a real-valued power allocation problem. Exploiting the techniques of sequential optimization and random matrix theory, we further propose a low-complexity suboptimal two-layer water-filling-structured power allocation algorithm. Numerical results illustrate the effectiveness and near-optimal performance of the proposed statistical CSI aided RE optimization approach.Comment: Typos corrected. 14 pages, 7 figures. Accepted for publication on IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:2002.0488

    Energy Efficiency Optimization for Downlink Massive MIMO With Statistical CSIT

    Get PDF
    We investigate energy efficiency (EE) optimization for single-cell massive multiple-input multiple-output (MIMO) downlink transmission with only statistical channel state information (CSI) available at the base station. We first show that beam domain transmission is favorable for energy efficiency in the massive MIMO downlink, by deriving a closed-form solution for the eigenvectors of the optimal transmit covariance matrix. With this conclusion, the EE optimization problem is reduced to a real-valued power allocation problem, which is much easier to tackle than the original large-dimensional complex matrix-valued precoding design problem. We further propose an iterative water-filling-structured beam domain power allocation algorithm with low complexity and guaranteed convergence, exploiting the techniques from sequential optimization, fractional optimization, and random matrix theory. Numerical results demonstrate the near-optimal performance of our proposed statistical CSI aided EE optimization approach.Comment: 32 pages, 6 figures. Accepted for publication in the IEEE Transactions on Wireless Communication

    Error correction of microchip synthesized genes using Surveyor nuclease

    Get PDF
    The development of economical and high-throughput gene synthesis technology has been hampered by the high occurrence of errors in the synthesized products, which requires expensive labor and time to correct. Here, we describe an error correction reaction (ECR), which employs Surveyor, a mismatch-specific DNA endonuclease, to remove errors from synthetic genes. In ECR reactions, errors are revealed as mismatches by re-annealing of the synthetic gene products. Mismatches are recognized and excised by a combination of mismatch-specific endonuclease and 3′→5′ exonuclease activities in the reaction mixture. Finally, overlap extension polymerase chain reaction (OE-PCR) re-assembles the resulting fragments into intact genes. The process can be iterated for increased fidelity. With two iterations, we were able to reduce errors in synthetic genes by >16-fold, yielding a final error rate of ∼1 in 8700 bp

    Continental-scale niche differentiation of dominant topsoil archaea in drylands

    Get PDF
    15 págs.- 6 figuras.- 75 referenciasArchaea represent a diverse group of microorganisms often associated with extreme environments. However, an integrated understanding of biogeographical patterns of the specialist Haloarchaea and the potential generalist ammonia-oxidizing archaea (AOA) across large-scale environmental gradients remains limited. We hypothesize that niche differentiation determines their distinct distributions along environmental gradients. To test the hypothesis, we use a continental-scale research network including 173 dryland sites across northern China. Our results demonstrate that Haloarchaea and AOA dominate topsoil archaeal communities. As hypothesized, Haloarchaea and AOA show strong niche differentiation associated with two ecosystem types mainly found in China's drylands (i.e. deserts vs. grasslands), and they differ in the degree of habitat specialization. The relative abundance and richness of Haloarchaea are higher in deserts due to specialization to relatively high soil salinity and extreme climates, while those of AOA are greater in grassland soils. Our results further indicate a divergence in ecological processes underlying the segregated distributions of Haloarchaea and AOA. Haloarchaea are governed primarily by environmental-based processes while the more generalist AOA are assembled mostly via spatial-based processes. Our findings add to existing knowledge of large-scale biogeography of topsoil archaea, advancing our predictive understanding on changes in topsoil archaeal communities in a drier world.This research was supported by the National Natural Science Foundation of China (Nos. 31700463 and 31770430), National Scientific and Technological Program on Basic Resources Investigation (No. 2019FY102002), Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China (No. 2019HJ2096001006), the Top Leading Talents in Gansu Province to J.D. and the Innovation Base Project of Gansu Province (No. 20190323). J.C.S. was supported by the U.S. Department of Energy-BER program, as part of an Early Career Award to J.C.S. at the Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle for the US Department of Energy under Contract DEAC05-76RL01830. M.D.-B. acknowledges support from the Spanish Ministry of Science and Innovation for the I +-D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. M.D.-B. is also supported by a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformacion Economica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014–2020 Objetivo tematico ‘01 - Refuerzo de la investigacion, el desarrollo tecnologico y la innovacion’) associated with the research project P20_00879 (ANDABIOMA).Peer reviewe

    Basic fibroblast growth factor reduces scar by inhibiting the differentiation of epidermal stem cells to myofibroblasts via the Notch1/Jagged1 pathway

    No full text
    Abstract Background Basic fibroblast growth factor (bFGF) plays an important role in promoting wound healing and reducing scar, but the possible molecular mechanisms are still unclear. Our previous studies have found that activating the Notch1/Jagged1 pathway can inhibit the differentiation of epidermal stem cells (ESCs) to myofibroblasts (MFB). Herein, we document that bFGF reduces scar by inhibiting the differentiation of ESCs to MFB via activating the Notch1/Jagged1 pathway. Methods In in-vitro study, ESCs were isolated from 10 neonatal SD rats (1–3 days old), cultured in keratinocyte serum-free medium, and divided into six groups: bFGF group, bFGF + SU5402 group, bFGF + DAPT group, siJagged1 group, bFGF + siJagged1 group, and control group. Jagged1 of the ESCs in the siJagged1 group and bFGF + siJagged1 group was knocked down by small-interfering RNA transfection. Expression of ESC markers (CK15/CK10), MFB markers (α-SMA, Collagen I, Collagen III), and Notch1/Jagged1 components (Jagged1, Notch1, Hes1) was detected by FCM, qRT-PCR, and western blot analysis to study the relationships of bFGF, ESCs, and Notch1/Jagged1 pathway. In in-vivo study, the wound healing time and scar hyperplasia were observed on rabbit ear scar models. The quality of wound healing was estimated by hematoxylin and eosin staining and Masson staining. Expression of ESC markers, MFB markers and Notch1/Jagged1 components was elucidated by immunohistochemistry, immunofluorescence, and western blot analysis. Results The in-vitro study showed that bFGF could significantly upregulate the expression of ESC markers and Notch1/Jagged1 components, while downregulating the expression of MFB markers at the same time. However, these effects could be obviously decreased when we knocked down Jagged1 or added DAPT. Similarly, in in-vivo study, bFGF also exhibited its functions in inhibiting the differentiation of rabbit ESCs to MFB by activating the Notch1/Jagged1 pathway, which improved the wound healing quality and alleviated scar significantly. Conclusion These results provide evidence that bFGF can reduce scar by inhibiting the differentiation of ESCs to MFB via the Notch1/Jagged1 pathway, and present a new promising potential direction for the treatment of scar
    corecore